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-~The coinander' a decisiormakifig Process is Cast Into the 81101 framework.,

A Sayestan (optimal) mathematical model of the decisionmasker's hypothesis 
oval

uation procedure Is developed. The inputs to the model are the hypotheses &and

sensor data, and Its output* are the posterior probabilities of the hypothc-ste5

being true and their respective states of nature. It is assumed that these

output@ are sufficient for tha co nander to perform the option generation and

evaluation activils-

<:; bref x-pleof owthe posterior probabilities of the hypotheses

evolva in the light of new data and ImplicAtions of the model are presented.
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SECTION 1

INTRODUCTION

The goal of this ongcing project is to develop and to validate a mathe-

matical model of a Naval comander's decisionnaking process. This process Ia

comprised of planning, organizing, and executing a given mission [1].*

"A model of a comander servos two purposes. They are: (1) to diagnose,

or to identify, the cosmander's cognitive limitations that render his boundedly

rational, and accordingly suggest decision aids or support systems that will

4 •enhance his performance, and (2) to appraise the effectiveness of such improve-

ments In the coi-and and control (C2) network, in which the coamnder is but

one element.

1 .1 •ETIIODOLOGICAL FRA•EWORK

MNodels of human decilonmaking are often classified Into three catego-
•. ries: normative models, descriptive models and normative-descriptive aodels.

Normative models, by definition, prescribe how decisions should be made when

the decisionmaker's objectives are explicit [2;31. Models that mimic human

decisionaaking behavior, in a non-humanoid way, are descriptive. These

models are used when decisions are repeatable, and are often "eferred to as

"bootstrapping" models [4). Normative-descriptive models assume that the

decisionamaker strives to be optimal, but is constrai'ned by cognitive ano, to

[References are indicated by numbers in bractets, and appear at the end of
the report.

e1
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a lesser extent, neuromotor limitations. The noreAive-descriptive approach

Is employed herein.

1.2 HUMAN DECISIONHAXING

A paradigm for the process of human decisionsaking has been conceptu-

alized by Wohl 11]. Wohl generically describes the decisionmaking process as

a cascading of four activities. They are:

"1. Information processing.

2. Hypothesis generation and evaluation.

"3. Option generation and evaluation.

4. Execution.

k mHe has coined this paradigm SIIOR (stimulus-hypothesis-option-response), since

it is an extension of the stimulus-response (S-R) paradigm of classical behav-

-. loral psychology [5). SHOR is a framework for structuring decision problems.

. * It is not dn analytical model. When referring to a SHOR model, what is im-

3 plied is a model that has been devised within the SHOR framework.

-;;: In this report, the commander's decisionmaking process Is cast in the

p•. SHOR framework, and a model for hypothesis evalm'ation is proposed. The hy-

pothes3J evaluation technique is normative In construct. It closely parallels

"the c6.,,eol and estimation theoretic [61 approach to hypothesis testing. The

4 sufficient Information for option generation and evaluation is suggested.

1. 3 COIMUMi AND COITROL

"~ •iThroughout this report, reference is made to the C2 process and the com-

•and, control, and communication (C 3 ) system. Various groups and Ind.viduals

have imbued these terms with somewhat different meanings. Thus, it behooves

us tc define what we are referring to by the C2 process and the C3 system.

21:3
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-. The C2 process Is a coordinated set oi Information gathering and deci-

sionmaking activities, carried out with the objective of effective force ap-

plication, i.e,, the best utilization of platforms and weapons In the battle

"environment. The C2 process is supported by the C3 system. The C3 eysaea is

a collection of sensor, Information processing, anti communication subsystems

a that allows the C2 urganization, which is comprised of military personnel

"operating within a hierarchical authority structure, to receive information

from and transmit Information about the battle environment, facilitating in-

formation interchange between the members of the C2 organization.

The C2 process thus involves a collection of human activities, organized

to accomplish certain goals. There exist no precise, standard techniques for

describing the C2 process, much less for analyzing or designing it. Part of

the difficulty in describing this process is because it is a dynamic process,

carried out by a team of people, who may be distributed over a large geo-

,, I graphic region and who are forced to operate under conditions of both infcr-

mation and outcome uncertainty In achiev.i-g their individual goals and those

of the overall C2 organization.

1.4 OUTLINE OF THE REPORT

"Section 2 reviews several theories of human response and introduces the

SHOR paradigm. Section 3 describes a mathematical model of the decision-

makir's hypothesis evaluation procedure cast in the normative framework. A

discussion of the effort to date and recommendations for next year's research

-- comprise Section 4.

o-.3
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SECTION 2

RUMAN RESPONSE MODELING

'- The major task for this project Is to model human behavior In specific

situations and, In particular, to model high-level decision aking for anti-

submarine warfare commanders (ASWCs). It is generally agreed that a model con-

siots of a set of assumptions, an organizational framework, and a set of rules

for manipulating the details of the model. Models of human behavior are usu-

SU ally validated using human performance data obtained from laboratory simula-

tions and/or field experiments [7;8;91.

"- Several approaches can be employed for modeling human behavior as de-

I * picted in Fig. 2-1. These approaches can range from simple descriptive models

"to models depicting optimal human behavior. Most of these models can be cate-

gorized into three classes as discussed below.

S2.1 DESCRIPTIVE MODELS

The descriptive models of human response attempt to accurately depict

observed human behavior. As such, these models require an oftentimes large

data base in order to explore relationships and deduce tre'ds. By construct,

descriptive models in the engineering domain are a posteriori in nature, and

"often with little or no underlying theoretical foundation. The model results

are generally task specific, since they focus only on the data associated

within a specific context. The net result is a model with extremely limited

"4
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HUMAN RESPONSE MODELS

".DESCRIPTIVE MODELS NORMATIVE MODELS NORMATIVE-DESCRIPTIVE MODELS

9 EXPLAIN OBSERVED BEHAVIOR e PRESCRIBE HUMAN BEHAVIOR 9 Ni)RMATIVE MODELING. SUBJECT

("WHAT HE DOES") (CWHAT HUMAN SHOULD DO") TO KNOWN HUMAN LIMITATIONS
a A ýOSTEkIORI AND DATA a REQUIRE OBJECTIVE FUNCTION ("WHAT HE SHOULD DO AND

CPIENTED OR GOAL WHAT HE DOES")

a TASK DEPiNDENT * CONSTRUCT IS TASK INDEPENDENT e REQUIRES OBJECTIVE FUNCTION

e LITTLE OR NO PREDICTIVE * EXPERT BEHAVIOR ASSUMED T REQUIRE SUBMODELS or HUMAN
CAPABILITIES LIMITATIONS

e PREDICTIVE CAPABILITIES * PREDICTIVE AND DESCRIPTIVE
e RULE-BASED MODELS * KNOWLEDGE-BASED MODELS CAPABILITIES

S EXAMPLES: MULTIDIMENSIONAL * EXAMPLES: MULTIATTRIBUTE 9 KNOWLEDGE-BASED AND RULE-
STIMULI MONEI OF BEHAVIORAL UTILITY (MAU) MODELS OF BASED MODELS
SDECISION THEORY DECISION ANALYSIS

, EXAMPLES: OPTIMAL CONTROLe ERRORS DESCRIBED e ERRORS MINIMIZED MODEL (OCM). DYNAMIC DECISION
MODEL (DON)

* ERRORS PREDICTED

Figure 2-1 Models of Human Behavior

predictive capability in describing human response or performance in a dif-

I' ferent environment. Human response models that are rooted in psychology,

"biology, and ergonomics are often descriptive.

An example of a descriptive model is the error rate of a human in a tar-

get identification and classification task (e.g., attack or reconnaisance air-

craft, friendly or enemy). The error rate, e.g., 2 errors/1000 targets, as

measured in the performance of the classification task, is not linked to any

underlying theoretical reasoning. Also, it is doubtful whether this number

has any utility if one wistl,,s to know the error rate in a different task

environment, or when the operator is provided with better iLformation.

Most descriptive models are regressive. In this framework, a human's

control or decision (or dependent) variable, di, is written as a linear

5
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combination of the pertinent system variables or attributes (i.e., the inde-

pendent variables), xj,

di .cixj
J

The coefficients cij, which are the slopes of the regression lines, are de-

rived by regression analysis using data for the xj and di. This equation

forms the basis for the early models of manual control and for many other de-

cision models. However, a dr&aback of these models is that the resulting cij

have no intrinsic meaning; if the task is changed, a new set of data must be

collected and a new set of cij's computed. Clearly, such a model is not

predictive.

"2.2 NORMATIVE MODELS

This class of models is predicated on the assumption that human behavior

is optimal in some well-defined manner. For example, in a decision context

one can assume that the human will compete against nature (or an adversary) to

maximize his expected gain, or utilit-,, over a given time horizon. In another

I S view, one can assume that the human's response is specified by a regressive

equation similar in form to that presented above but then the human tries to

maximize reward - or any rational criterion - by optimizing the selection of

R• the coefficients cij. Decisionmaking models developed through the more mathe-

matically oriented disciplines, such as the control, stochastic estimation,

information, probability, and decision theories are typically normative.

The key ingredient for developing a normative model is the specification

of an objective function or goal that is assumed to be extremized by the

IL
6
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human. Once specified, tools of optimization theory* can be applied to solve
0 .,a

for an. optimal policy or decision rule. Thus, the approach is capable of gen-

erating piedictions of optimal human response without the need for a priori

data. Furthermore, the optimization approach is not limited to any type of

task so long as a task objective can be specified.

This class of models prescribes what a human should do. However, experi-

ence with such models has shown that the model results tend to be overly opti-

mistic, i.e., model performance exceeds human performance; human performance

is noroptimal. This Is exemplified by the findings of Tversky and Kahneman

"[101, Lopes [11], and Einhorn and Hogarth [12], all of which indicate that

'* , people do not adjust their probability estimates in strict accordance with

Bayes theorem. Attempts to bring model results into agreement with data usu-

ally focus on generating a nonoptimal decision rule for the human, or on modi-

fying his objective function. Thus, concepts such as discounting future re-

wards, optimization over a limited future horizon, and substitution of util-

ities for task values have been introduced as modifications to otherwise purely

normative models.

"2.3 NORMATIVE-DESCRIPTIVE MODELS

This class of models is normative in construct, but with the assumption

that the nonoptimality of the decisionmaker arises from his own inherent limi-

tations; for example, delays in identifying and classifying targets, aggre-

gating and processing information, randomness, limited processing "bandwidth,"

short-term memory (STh) limitations, and limited combinatorial capability.

"*For example, dynamic programming, maximum principle, calculus of variations,
least squares, etc.

7
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Thus, the normative-descriptive models are couched on the hypothesis that the

human tries to respond optimally, subject to these limitations, This norma-

tive construct requires the specification of an objective function or goal,

as in the normative case, but optimization is now constrained.

L,* .",' The descriptive features of the models are those associated with the hu-

man's limitation*. Thus, the model does not attempt to explain why or how

certain limitations arise, but rather includes their effects as constraints.

For example, numerous experiments in the psychological literature indicate a

maximum storage capacity for STH of seven (plus or minus two) items [13).

Isolating and mathematically representing the important human limitations

is the essence of the descriptive portion of the normative-descriptive class

of models. Clearly, human response data are necessary to accomplish this

"task. In addition, we must ensure that the limitations are not task depen-

dent , but are indigenous to the human among tasks, e.g., time-delay and

!; * raadomness.* Fortunately, with the aid of human response data from the ex-

perimental psychology literature, it has been possible to isolate and quantify

many of the principal limitations. Thus, the normative-descriptive models are

"" truly interdiscipl-nary in nature. They are also capable of representing in-

dividual difference3.

The normative-descriptive models have the ability to generate predictions

of human response and performance once the objective function and limitations

are specified. The fact that this class of models lies between the purely

normative ones and the descriptive ones implies that this approach attempts

*Thus, data from simple, independent experiments that focus on identifying the
limitations can be used as a descriptive constraint in more complex
scenarios.

8
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to equate what a human does with what he should do. Employing this principle

"of bounded rationality, the norm'tive-descriptive models have generally met

S with excellent success in application. In manual control situations, the

normative-descriptive approach led to the development of the optimal control

-, •model (OCM) of human response [7;8]. In complex decisionmaking contexts such

, C as Cq systems, however, where the cognitive skills of the operator predominate

over the motor skills, there are virtually no normative-descriptive models.

Indeed, there is not even a consensus on modeling, and only a few descriptive

studies exist in process control situations [14]. One beacon, however, is

the application of a normative-descriptive construct to mIltitask selection or

"sequencing where a variety of tasks compete for the decisionmaker's attention.

The dynamic decision model (DDM), developed for this situation, captures the

interplay among human estimates of time required, time available, and expected

reward, while including submodels for various human limitations [9]. There

~ has, however, been a paucity of research aimed at extending the normative-

"descriptive modeling approach to more complex decisionmaking tasks such as

those of C2 . An example does exist within the electrical power domain [15],

in which the decisionmaking behavior of power grid dispatchers in emergency

situations has been successfully modeled in line with normative-descriptive

constructs.

2.4 MODES OF HUMAN BEHAVIOR

Another issue that must be addressed when modeling human decisionmaking

is the classification and representation of the different modes of behavior.

Rasmussen [161 has suggested a classification that delineates three types of

*' behavior: skill based, rule based, and knowledge based.

e 9
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Skill-based behavior refers to actions with a strong habitual, inveterate

flavor, such as manual control or simple Information processing. Not much

conscious attention need be directed toward such behaviors. Behavior that is

governed by procedures or doctrine is termed rule based. Knowledge-based be-

havior requires individuals to extract the appropriate information from their

knowledge base and construct or deduce the appropriate rules or skills to

employ. It is assumed that decisionmaking, hypothesis generation and hypoth-

esis testing involve knowledge-based behavior.

The importance of appropriately identifying what class or classes of be-

havior are involved bears directly on how that behavior is to be modeled.

Skill-based behavior might call for neurophysiological equations, while look-

up tables or production systems can be used to represent rule-based behavior.

Knowledge-based behavior requires a different and more abstract tack, such as

knowledge of objective functions, cost functions, or goals, so that such be-

I Uhavior can be encoded.

2.5 THE SHOR PARADIGM

The SHOR paradigm [1] was developed to provide a framework for decision

task description in C2 . A task will often have certain well-defined proper-

ties or structures and it is the purpose of SHOR to provide a useful mechanism

to describe these salient task features.

In essence, the SHOR paradigm is derived from the stimulus-response (S-R)

principle [5) of classic behavioral psychology. The basic elements of the

SHOR paradigm are shown in Table 2-1. As depicted in the table, raw data are

sensed and processed by the perception processor, i.e., in the S component

of SHOR. Processed data are then operated on by the H component of the SHOR

10
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paradigm. This operation addresses thu quest:ton: What is the situation or
S-.

state of the system? Hypotheses are generated and evaluated to formulate or

"to describe the state of the system. Once hypotheses are formulated, the 0

or option generation and evaluation operation addresses the question: What

if this or that Is done? Options are considered and evaluated in the light

of the current hypotheses about the situation and the desired mission objec-

tives. Lastly, an action or response, R, is organized and executed in line

"with the option selected, and in turn creates an observable effect on the

states of nature.

"TABLE 2-1. SHOR PARADIGM IN TERMS OF TASK ELEMENTS

S H 0 R

"STIMULUS HYPOTHESIS OPTIONS RESPONSE

"PROCESS MAP DATA INTO EVALUATE EXECUTE
TASK DATA INFOR14ATION ADMISSIBLE ACTIONS

ACTIONS

ENVIRONMENTAL SENSORY HYPOTHESES DECISIONS THAT
INPUT DATA DATA ABOUT STATE AFFECT STATES

OF NATURE

SENSORY HYPOTHESES DECISIONS THAT RESPONSES
OUTPUT DATA ABOUT STATE AFFECT STATES

OF NATURE

". '*.*-*I.
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2.6 ELABORATION OF THE SHOR PARADIGM

-It Is assumed thrt the decisionmaker is continually processing and ana-

lyzing information and, when necessary, executing responses that have some

specific impact on the real world. Thus, to observe a decisionmaker is to

observe an ongoing process, and when using SHOR to describe this process it

! must 1e viewed as dynamic.

It is assumed that the decisionmaker's actions or responses affect the

real world through a set of controlled variables. The effect of these re-

sponses, as well as those of other uncontrolled variables (e.g., enemy action

and weather), are d,-tectable by surveillance and intelligence sensors, and

: can become input data or stimuli for the perception processor, The percep-

tion processor utilizes data-driven and/or concept-driven processes to search

the incoming data for patterns to recognize and classify.

The hypothesis or set of hypotheses under consideration Is the result of

mm interaction in the perception processor between the incoming data and the hu-

man's internal representation or mental model of the total system with which

he is dealing. The more expert the individual, the sharper and richer the

mental model. In any case, the resulting hypothesis provides the basis for

comparison of the incoming data with predictions derived from the hypothesis.

Given a set of alternative hypotheses, incoming data may serve to increase

"the decisionmaker's subjective confidence in one hypothesis over the others.

Alternatively, the data may not support any of the hypotheses. Note that it

is this condition where no hypotheses are supported by available data that

leads to an alteration of one's mental model. Likewise a single hypothesis

may or say not receive support. If no hypothesis Is supported by the data,

one must then reconsider the validity of both data and hypothesis and perhaps

1": ~12
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modify the hypothesis accordingly. The hypothesis vlith the greatest subjec-

tive confidence or perceived likelihood of being correct will be used to help

S..generate response options and, ultimately to help select a response.

2.6.1 Functions and Characteristics of the Perception Processor

At the stimulus or sensory end of the perception processor we are dealing

more with data processing than information processing, although the two pro-

r- cestes can never be completely dissociated. If we consider the outside world

in purely physical terms, it can be described as a flux of energy that exsist

n different forms and at different levels [17]. Here, the problem is one of

rdetection. Human sense orgars are responsive to only a tiny portion of the

electromagnetic, mechanical, and chemical flux. Early psychophysical concepts

of fixed sensory thresholds have given way to modern signal detection theory,

- -which describes variations in detection probability in terms of a receiver

-' operating characteristic (ROC) curve. The ROC curve depicts the likelihood of

a subject's guessing that there is a signal present when In fact there is one,

and the likelihood of his guessing that a signal is present when in fact there

is none. Signal strength relative to noise bac&,ýround certainly has an impor-

tant impact on the ROC curve as a whole, but variables such as cost, utility,

expectancy, attitude, and the like are equally Important in that they serve to

bias the operating point or, the ROC curve. In fact, It has been argued that

in most real situations detection results are determined more as a function of

"subjective variables (e.g., perceived costs and attitudes) than by sensory

acuity. This also implies that appropriate training, specific monitoring pro-

cedures, and well-designed displays can mitigate the negative effect that cer-

tain psychological variables can have on detection.

13
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DATA-DRIVEN VERSUS CONCEPT-DRIVEN PROCESSING

Operations that are set in notion by arriving data are referred to as

data driven. Lindsay and Norman [181 describe the data-driven process as

follows: the onset of processing is initiated by incoming data; each of sev-

"era], stages of analysis performs its operation of rect.ivina input (data) and

PE doing something with it; and the outputs of each stage are the inputs that

drive the next stage. This process proceeds in a smooth, logical progression

culminating in the recognition of thse Item. 14othing happens within a data-

driven system until data are input at one end. This Is contrasted with a

concept-driven process, which begins with a conceptualization of what migbt be

present (i.e.. a hypothesis) and then lo,'ke for confirming evidence, In-lu-

encing the processing mechanism to search for the expected results [181. A

perceptual process is concept-drivon whenever knowledge of the possible inter-

pretation or ccnceptualization of something helps In perceiving thiat thing.

Finally, it uast be emphasized that neither process alont is sufficient to

explain or carry ou6 the pcrceptual processing of datR. Therefores in this

study botb are assumee t-') be occurring simultanewsly.

"CLASSIFICATION AND iECOGI'ITION

Initial perceptual processing of th^ sensLry data involves both attention

allocatlon and pattern r.tcogntt.on. First, it is necessary tr sort out rele-

vant data from the myriad of sensory inputs. Then the problem becomes one of

pattern recognition. Immediately we are faced with an apparent peradox: it

appears that we uast understand the meaning of Oata before we can analyze its

content properly; but how can we understand the meaning of data before the

analysis of its contgn. has occurred [181? If we assume that the human brain

11'
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is capable of simultaneous analysis at several levels*, a resolution of the

paradoa Is possible. In particular, we assume that perception is both concept-

driven and data-driven, thac these two forms of processing interact with each

other, and that their combined power is tapable of analyzing data that neither

process can deal with alone.

One of the simplest schemes for classifying and recognizing patterns,

and a prime example of a data-driven process, is template matching. For each

pattern to be recognized there must be sae preexisting template (representa-

tion). T'o icomplish recognition, the incomir4g data pattern Is matched against

the preexisting template. Template matching is quite straightforward; since

Incoming data patterns are assumed to be matched against all of the possible

templates simultaneously, the cumbersome procedure of trying out a succession

of templates one at a time to find the best fit Is eliminated. Unfortunately,

simple template matching lacks the flexibility to account for human pattern

B recognition, since if the Incoming data varies even slightly (e.g., In else or

orientation) from the template, the procedure will fail. The introduction of

fuzzy templates or of preprocessing of the data before a match is attempted

Pcan often improve matching.

An alternate view Is that specific templates are not employed. Rather,

specific feature detectors are used, and there Is good evidence that such de-

tectors not only exist but map directly onto neurological structures and or-

"ganizations within the brain. According to this theory, a succession of fee-

ture processors work on the incoasing data, with each procaisor performing a

*The brain's ability to simultaneously process information at different levels
is supported by the work of Karl Pribram, who argues that the brain is holo-
graphic in nature when considering storage and processing [19).

15
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different function. The outcome is a decision on what the most likely pattern

is that conforms to the data. If conceptual processing (i.e., some knowledge

or expectation of what the data met be beyond what Is actually present In the

data) Is added to such feature processing, the likelihood of successful inter-

pretation is furtber increased. This added infor stion might come from the

context of the sensory data, where the overall anvironment In which experiences

are embedded represents what ir meant by context. As Lindsay and Norman 1181

have pointed out, the ability to use context makes the human perceptual system

far superior ,,nd more flexible than either feature detection or .esplata match-

Ing alone. The combined effects of data-driven and concept-driven processes

L thus provide a basis upon which higher cognitive processes can act.

Note that while descriptive paradigms such as those mentioned above exist,

there are at present no mathematical models of these processes and few good

theories on which to base such models.

2.6.2 The Human Internal Wodel

As a human becomes well-trained In a specific man-sachine system task and

q context, he develops an Internal characterization of the dynamical response

and behavior of the system with which he Interacts (14). This mental model,

which Is refined through the processes of learning and experience, Is one of

the key discriminators between rule-based human response and knowledge-based

response (16). As such, inferring the human's internal model Is a necessary

precursor to the development of 'normative and normative-descriptive models.

The concept of a mental model has long been recognized in the psychol-

ogical literature (e.g., Tolman's "cognitive maps" or Lawiu's "life-spece")

[20;211, but only of late has the concept begun to evolve Into a mathematical

16
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comeotruct, sufficiently wail understood for Inclusion within an overall human-

system model [9]. An internal or mental model may be thought to consist of

three basic Ingredients: (1) a description of the variables (states) of im-

portance, Including external Inputs and disturbances (independent variables)

.nd outputs (dependent variables); (2) the assumed coia'al and/or correlatioial

*J relationships that exist among the variables; and (3) values for the coeffi-

cients (relative importance of terms) in the equations tnat define the rela-

K• tionships. In any given context the process of eliciting or Interring a hu-

man's Internal modal of system response is extremely difficult. In highly

complex decisionmaking contexts, the number of system ,variables becomes too

K large, so that aggregation or chunking within the internal model is likely.

In additton, static relationships among variables are likely to dominate in

the internal model.

An Internal model serves three primary functions in the broader human-

system modeling context: hypothesis generation, data interpolation, and out-

come extrapolation. First, the relationships among variables in the internal

model can be used in the proesass of transforming data into information by means

of filtering, estimation, correlation, and discarding of input ctimuli. It in-

volves data validation, which in turn affects Internal model validation. The

second function of the mental model involves its use for prediction or extrap-

olation, I.e., in directing the search for confirming or disconfirming data.

This is the process of determining what additional data should be perceivable,

given that the hypothesis based on the mental model is the true one. This re-

quires a rich and robust mental model, an estimate of the present state, and

17
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-' an estimate ot system inputs/disturbances over a predictinp horixon. Herein

lies one oi the two main sources of uncertainty in decisioneaking:

.0 Information input uncertainty. Errors in estimating the
present state due to Imperfect internal modeling or sen-
sory limitations in perceiving input data will affect

. prediction, interpolation, and evaluation accuracy.

Since the internsl model is only an approximation to the actual situa-

tion or system dynamics, the effects of uncertainties will always be present.

Indeed, it Is often possible for an internal model to be misled, thereby exac-

"1. erbating the effects of any uncertainties. Finally, the third function of the

mental model Involves its use in outcome extrapolation and option analysis.

The internal construct that a Naval warfare commander holds of the process of

a mission's unfolding not only serves to correlate the various measurements

he obtains, but also provides him with a means to assess the effects of an

action. Herein lies the second major source of uncertainty in decisionmaking:

0 Consequence-of-action uncertainty. Errors in the internal
model relations, combined with large uncertainty as to the
decisions/actions of nature or an adversary, will cause the
future evolution of system response to differ from that
predicted by the internal model.

Determination of a suitable mental construct and representation by a set

of verbal rules or mathematical equations for purposes of analysis is a neces-

sary, albeit difficult, aspect of describing an individual's cognitive activi-

ties in a given situation. On the one hand, the internal model must capture

the fundamental static and dynamic relationships inherent In the, military sit-

uation or engagement. On the other hand, the model must be sufficiently sim-

plified and or aggregated so as to be compatible with human cognitive limita-

tions and constraints.

18
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2.6.3 Hypotheses

In many ways the concept of a mental model is closely allied with that

of a -hypothesis. For example, one can conceive of a hypothesis as a mental-

model aggregated and specified for a particular set of circunstances. This

conception assumes that a subset of the variables delineated in the "general"

or "full" mental model are selected for the specific situation at hand, to-

getheE with the appropriate functional relationships and coefficients. Each

hypothesis represents a specific conceptualization of the state of nature

and hence a model of the particular situation - it is the human's attempt to

assess the situation.

It is assumed that an individual can hold more than one hypothesio at a

time, which implies different alternative specifics of the situation. An

individual in such a situation might be heard sa-,ing: if the situation is not

"A" (if "A" is not the state of the system), then it might be "B" (some cther

state of the system). Given human STM limitations, however, it is unlikely

that an individual can seriously consider more than two or three hypotheses at

any one time.

2.7 HYPOTHESIS GENERATION, MENTAL MODELS, AND MEANING

Hypothesis generation addresses the problems of how people generate a

reasonable set of hypotheses and modif, the set as the need arises. Hypoth-

esis generation, including what is commonly referred to as creative thinking,

involves searching memory for relationships that seem appropriate to the

situation. Well-trained individuals by definition possess a rich and

*In spite of its importance, until quite recently very little attention was
devoted to the issue of hypothesis generation (see Bruner, Goodnow, and
Austin [22] or Wason [231 for some laboratory experimeits on concept at-
tainment and "discover the rule" type tasks).
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"detailed knowledge base and mental model frorx which to infer possible situa-

tions causing an event. But what exactly is it that these experts are doing?

Is it a creative activity (a mental i st view), or are they simply processing

information (a reductionist view)? Neither view appears tenable since the

former is not subject to experimental verilication and the latter does not

address the underlying meaning of the information being processed. In fact,

whereas information theory sidesteps the issue of meaning and deals only with

symbol transmission rates and errors, understanding and describing the human

decisionmaking process requires the consideration and operational definition

0of meaning. We assert that the fundamental purpose of hypothesis generation

is to extract meaning from data. This assertion gives rise to a measure of

performance for the hypothesis generation subtask. Since data take on meaning

in the form of hypotheses, the extraction of meaning from data can be measured

in terms of hypothesis uncertainty. As we shall see, the task of hypothesis

generation thus is really a task of meaning extraction and, concomitantly,

uncertainty reduction.

Uncertainty in physics and in information theory is a well-defined mathe-

matical concept, one directly associated with the variance of a stochastic pro-

cess aa.i the resultant p:obability of occurrence of a given outcome at a given

time. While this approach is satisfactory from a mathematical standpoint, the

term itself is oubject to confusion and argument when attempts are made to

extend its applicat;,on beyond physical systems. Shannon, for example, explic-

- itly chose to eliminate the concept of meaning from his work, defining infor-

mation as negative entropy (or certainty) in terms of discrete symbols and

their probabilities of occurrence, or in terms of signal-to-noise ratio 124].

20
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This limited definition, while extremely powerful for communications

system engineering purposes, is of little use in designing C3 systems. A C3

system's major functions, in addition to the obvious ones of (1) gathering

and disseminating information, and (2) planning, organizing, and executing

responses; include assisting decisionmakers in extracting meaning and in

i predicting outcomes.

0 Meaning extraction. An issue in extracting meaning from
ý.. input information appears to be how military commanders

deal with hypotheses. Fer example, having no hypothesis
about the meaning of a given input data set is tantamount
to all possible hypotheses being equally likely. At the
other extreme, having a large and well-structured set of
hypotheses tends to overburden one in the opposite direc-
tion. Neither extreme serves to focus attention upon
what new information is to be isought. Given a plethora of
information and a number of hypotheses, the philosophical
operationalist's view must be held: a hypothesis is use-
less unless its predictions can be tested. This rule will
serve to reduce the set of hypotheses under consideration
to a subset of testable ones. The next step is to test,
and that requires that new intormation be sought. As a
case in point, new sensor and sensor correlation equip-
ment on Aegis ships will be able to provide simultaneous
information on hundreds of targets. The critical needs
will be those of: (1) blockia& irrelevant information,
and (2) cueing of selected sensors to obtain discriminant
information on selected targets in real time. But neither
can occur in the absence of hypotheses. One, or at most
a very few, carefully constructed hypotheses will serve:
(1) to eliminate from wasteful consideration that input
information that is not relevant, and (2) to direct atten-
ion to requisite new discrimLnant information to further
reduce the hypothesis set. We assert that tacticians,
strategists, diagnosticians, executives, and commanders
are expert to the degree that they possess and effectively
exercise this ability of hypothesis generation and testing.

Wise's [25] concept of "emergent decisionmaking" implies a
process of hypothesis creation, development, refinement,
test, rejection, modification, and ultimate acceptance and
action. As suggested by Wohl [1], the convergence of this
process may give rise to the perceived "emergence" of a
decision. We further assert that the rate of hypothesis
convergence is an important contributor to the rate of
reduction of subjective uncertainty.
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'i * Outcome prediction. The key issue in predicting military
outcomes seems to be how commanders utilize the hypotheses
they construct. As noted earlier, his mental model is
really a commander's aggregated model of reality. To the
extent that his model is accurate and the sources of vari--
ance (e.g., data accuracy, enemy and own force behavior,

•. and weather) are small, he can formulate hypotheses and
! predict outcomes associated with various action alternatives.

While the commander's model of reality is certainly not a
mathematical one, he nonetheless uses it in just the same
way as a scientist does. Based on data, he constructs a
hypothesis involving events, relationships, and causality.

K iHe then tests his hypothesis by using it to predict the
course of events given a new set of conditions, later
observing the degree of concordance of the actual versus

0- predicted course and modifying his hypothesis accordingly.
Thus we see that the hypothesis, as well as being a model
of reality, can also act in a very real way as a gen-
crating function for future scenarios.

It Is important to note that the number of hypotheses generated with re-

I E. spect to a given data set is not a useful measure in this context, contrary to

Gettys et el1 [26], As noted above, too many hypotheses are as detrimental as

Snone at all.

Thus, how human decisionmakers accomplish hypothesis generation is a

critical issue. Recent work on analogical reasoning and mental models has

R shed some light on the process of human hypothesis generation. The analogical

reasoning view of Klein [27] asserts that when faced with a problem or a de--

cision situation we search memory for similar or analog situations; the solu-

tions to past p:oblems (or minor variations of them) become the current hy-

pochesis set to be tested. A process similar to the analog process is to scan

memory for a parallel situation and then to manipulate the variables that seem

to have led to solutions in the past for possible applications to the present

"problem.
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The mental model position [28;291 contends that the hypothesis set de-

rives directly from the interaction of input information with an expert deci-

p* sionmAker's mental model or internal representation of a problem situation.

-If a ulntal -.odel can serve as a theory does in science, then hypotheses can

be derived from them in a similar manner; namely from the set of elements or

variables comprising the theory, the functional relationships among the ele-

ments or variables, and the constraints on the functional relationships. By

extension, the same should hold for expert knowledge domains.

For highly trained expert decisioramakers (commanders), the analogical

view of hypothesis generation seems an appropriate position. For example, we

assume that ASWCs rill be searching their knowledge base for similar or anal-

ogous situations as a basis from which to generate plausible hypotheses about

the current state of nature.

Ir2
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SECTION 3

MATHEMATICAL REPRESENTATION OF SHOR: CONCEPTS AND PROCESSES

This section describes the mathematical details of the normative model

"of the human decisionmaking process as developed to date. The model is com-

posed of well-known types of simple components, chosen for their tractability

and familiarity, which, when combined, behave like a human decisionmaker.

The model components were selected for their input-output behavior, and not

because their internal workings resemble those of the human mind. Similarly,

the model details might, at times, seem more complex or redundant than the

human internal processes we associate with them. For example, we need rela-

tively sophisticated mathematics to capture the idea of a human choosing the

"best" hypothesis, or reevaluating the data in the light of a new hypothesis -

actions that seem simple and natural. The complex mathematics, however, have

* simple parameters that we can associate with mental views of the world and

human limitations.

The section is organized as follows: subsection 3.1 presents an over-

view of the SHOR model as devel!'ped to date. Subsection 3.2 then presents an

overview of the first half of the model (dealing with hypothesis evaluation)

in more detail, and subsection 3.3 describes the individual elements used for

this half. Subsection 3.4 presents an example of what the model variables

would be in a hypothetical ASW application, and subsection 3.5 discusses how

model behavior relates to parameter selection (in particular, how errors

t behave with time).
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3.1 SHOR OVERVIEW

The SHOR paradigm represents a sequential breakdown of human informa-

S.m tion processing. New information (stimuli) are processed and given meaning -

- 'causing one or more hypotheses to be generated and considered. These hypoth-

-- eses, and the decisionmaker's estimates of their relative probabilities of

being true, are used to evaluate possible actions (options) before a response

is chosen. The process is shown schematically in Fig. 3-1, where the stimulus

(S), hypotheses (Hi), and response (R) are process variables (functions of

time) and the hypothesis and option evaluators (H,O) represent operations on

these variables. The generation of hypotheses and options requires a higher

K ilevel of creativity, and modeling, than their processing and evaluation, and

will be treated separately in a subsequent phase of this research examining

•..: mental models as generating functions.

The overall intent of this model is to represent the Luman decisionmaker

as a controller working in an uncertain environment with multiple hypotheses

about what is going on in the battle. This process can be represented as in

Fig. 3-2, where the stimuli are measurements (z) made of the real world; state

I ~ estimates (x) and subjective probabilities are formulated about the real world;

and control actions (u) are selected to affect the real world.

The state of the system refers to the total collection of underlying

variables that change with time and that are sufficient to capture the status

of a system. The data refer to the much smaller collection of measurements -

noisy samples of some of the state variables - that are available to the deci-

sionmaker. The state estimates (x) are his internal estimates of the true

"state, based on all of the data available. There is a separate state estimate

for each hypothesis, since each corresponds to a different view of what is
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// MULTIPLE
HYPOTHESIS HYPOTHESES OPTION
GENERATOR GENERATOR

m-ms

Figure 3-1. SHOR Model

" ~iiP(Hi lz)

SSTATE ESTIMATES
AND PROBABILITIES COMPUTATION

DATA FOR EACH HYPOTHESIS CONTROL
I"-

OBJECTIVE

Figure 3-2. SHOR Mathematical Representation
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going on (ioe., a different mental model). The probability p(HiIs) is the con-

f idence placed on each hypothesis (Hj) after the data have been received and

considered. All of the variables xg z, and u are vectors (i.e., they can have

more than one element, such as positions, velocities, or orientations) and are

functions of time (either continuous or discrete), and we wish to model how

* they evolve and change as new information arrives and time passes.

A hierarchical breakdown of a SHOR model is described, speciflying at each

stage the important processes and variables that represent each component. The

highest-level breakdown was into SHOR itself. Certain assumptions are implicit

in Fig. 3-2, but the main restriction it places on our mod~l Is the passing of

only state estimates and probabilities (for each hypothesis) between the H and

0 blocks. These variables were chosen as both sufficient variables for option

evaluation and significant results of hypothesis evaluation. They are the pri-

mary processes that capture the notion of attaching meaning to the data from

the real world, and they answer two essential questions: (1) given a set of

possible hypotheses how does the data support or refute each hypothesis? and

"(2) what does the data Imply about the state of the battle assuming each hy-.

pothesis is tiue? The answers to thesu questions are represented mathemati-

cally by the conditional probabilities p(Hilz) and state estimates xi.

Although the primary emphasis of this year's effort is the description of

the hypotheeis proceesing, it is important to make certain assumptions about

the option evaluation component in order tc guarantee the sufficiency of the

H component outputs, i.e., only the posterior probabilities, p(Hisz), and state

estimates, xi, are necessary to discriminate between alternative actions.

27
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The "best" action Is determined by the "minimization" of the risk of los-

Ing own-force assets (e.g., the carrier In a battle group). Explicit trade-

-. off. must be made between deploying a platform to prosecute a known threat

and creating "holes" in the defense (e.g., Increasing vulnerability to the

next, as of yet undetected, threat). As a consequence, it is expected that

P most options will involve the comaitment of resources to better determine the

situation, i.e., to enable him to discriminate between hypotheses by taking

more measurements.

* 3.2 RYPOTHESIS EVALUATION

The hypothesis evaluation component receives data and hypotheses about

the real world and determines whether the data support each hypothesis and

what the data imply about the state of the world if each hypothesis were true.

For our purposes, a hypothesis is a conjecture about what is going on - it is

3 •a model of how the world (or local battlefield part of the world) works and

what an enemy intends. It must describe both what is happening and what is

.2. about to happen. This, in fact, Is similar to the mathematical notion of

state, and we define a hypothesis as a maertal model of the world in which the

model states capture the current information about the world. This model Is

much smaller than a human's total mental model of the battlefield. The hy-

pothesis may be thought of as a subset of the total model with specific param-

eters or subeodele replacing uncertain components in the larger model.

For example, an expert comoander knows how vehicles behave, weapons work,

and battles evolve, but he may be uncertain about what an enemy is doing. His

hypotheses may be several alternate models of what the enemy is doing, based
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on components chosen from his experience and hU whole model. The hypotheses

thus fit within the larger model and yet are more specific, or less uncertain,

than the larger model.

The first requirement for the hypotheses Is that they be different enough

to imply different states that can be observed from the data, i.e., the dif-

., m, ference between hypotheses must be both discernible and observable. Two hy-

potheses that differ only In an insignificant or unobservable detail are not

considered. Of course, hypotheses that are consistent with the data at some

I time but that employ fundamentally different models (e.g., enemy attacks at

point A or B when the data indicate he is heading near both) are considered.

In fact, most cases of interest involve multiple hypotheses that cannot yet be

ruled out by the data but that are nonetheless different.

If the hypothesis is a model of the world, and we wish to estimate the

states of the model and the probability of the model's being true given noisy

measurements of the world, we are led to consider Kalman filters and multiple

hypothesis testing techniques [6;301. The strength of these techniques lies

in their mathematical foundations and adaptability, and both are aed for the

hypcthesis evaluator describad below. We are encouraged to use Kalman filters

in thls context by their successful application to human modeling (in simpler

"control tasks) in the work of [7;9].

The overall model we propose for the hypothesis evaluation function is

shown in Fig. 3-3. Data are passed to a state-estinator component composed of

several parallel Kalman filters (one for each hypothesis). Each Kalman filter

provides two key outputs: the first is a state estimate based on the data,

and the second is the error sequence, 61, which is the difference between the
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. HYPOTHESI!•-" CALCULATOR THEOREM

"Figure 3-3. Rypothesis Evaluation

measurements and the filter's prior estimates of what the measurements would

be. The error sequence is an indication of how well the data match the ftl-

ter's expectations, and thus provides key Information about how the data sup-

port each hypothesis. Each error sequence Is input to a likelihood function

calculator that computes the probability of a data sequence's being observed

given that the hypothesis Is true. This function is input, in turn, to Bayes

theorem, which computes the desired probability p(Buiz) of the hypothesis's

being true.

3.3 COt2PONENT DESCRIPTIONS

The above wdel involves such parallel processing of data: parallel

*• state estimations; likelihood evaluations; and Bayes calculations. Such pro-

ceasing may not be an accurate depiction of how the brain functions, but it

30
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does mimic how a comeander would simultaneously consider several hypotheses

about what is going on,, eamining how new information support or refute each

U -hypothesis.

3.3.1 Mental Model Implied by a Rypothests

A conceptual model of the battlefield Is shown In Fig. 3-4. The inp'ats

to the world consist of our actions, the enemy's, and nature's. These ac-

tions cause the states of the world to evolve, which in turn is measured by

us through observations. The measurement process involves only some of the

states.

ENEMY ACTIONS
NAUEMENTAL MODEL OUTPUT MEASUREMENT OBSERVATIONS
NAUEN'OF "HOW WORLD WORKS" PROCESS

OUR ACTIONS--10

SYSTEM STATES R-Os

I! Figure 3-4. Input-Output Model

The general features of a mental model are captured by the specific lin-

"ear system shown in the vector block diagram of Fig. 3-5. The state of the

system is denoted by x, the output, y, observation, z, and Inputs, u and w.

"Of these vector variables, only the input, u, and observation, x, are avail-

able to the decisionmaker. The other variables represent an internal char-

acterization of "the way things work." The use of vectors disguises the fact

"that each of these variables can include many separate el~ments, such as the

positions and velocities of several vehicles in three-dimensional space. The
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szle of these vectors, and therefore the true complexity of the model, needs

to be determined for each application. The beauty of the mathematics Is that

., . the operations can be described in the compact vector-matrix form, independent

of the lse of the system.

REASUREM4ENT

MNOOE NI

O" CT ONS d'r- • STATES OUT• PUTS OIISERVAT IONS
i:'". ~~CONTROLS U-_.- _

LEGEND:

CONTROLS A u MATRIX REPRESENTING SYSTEM (.'NANICS
STATES S - MATRIX SHAPING NOISE INPUTS

y OUTPITS i •ATRIX SHAPING INPUTS (INPU1
* MEASUREMENTS EFFECTIVENESS)

PROCESS NOISE C w OUTPUT MATRIX
M MEASUREMENT NOISE

Figure 3-5. Linear System Representation of a Mental Model

This model represents the state dynamics as a linear system, with possi-

bly time-varying coefficients, driven by the decisionmsaker's actions and some

uncontrolled noise or disturbances, and observed through imperfect measure-

mentp. The transformation matrix, C, represents the fact that, even without

noise, the entire state of the system cannot be observed, but only a limited

number of outputs. The state is the current information needed to predict

the future system outputs when combined with future inputs. It summarizes all

k r~ important current facts about the system.
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The parameters of the model are contained in the A, B, C, and G transf or-

mation matriccs and the noise covariance matrices Q, for the process noise w,

and R, for the measurement noise n. The noise piocesses represent unknown

inputs to the system and measurement, and are a convenient way of introducing

uncertainty. We need to know the average strength of these processes, but

i, we cannot know the actual values, w and n. In the standard filter, they are

represented as white, i.e., flat power spectrum, Gaussian processes, which if

*" integrated would result in Brownian motions. These noises are useful mathe-

matical fictions that introduce input and output uncertainty into the system

description, and result in a well-behaved state estimator. Such noise de-

scriptions are reasonably accurate for a wide variety of actual noise proces-

ses, and the parameter values are not usually critical, i.e., they do not need

to be known precisely.

The model, as shown, represents a contint-ous-time system, where the vari-

ables are considered to be processes changing w-th time. Kalman filters can

also be created for discrete-time systems, where the processes change at spe-

cified time intervals. Both static and dynamic C2 models fit into either of

these frameworks.

3.3.2 Kalman Filters for Linear Process Models

Given the linear model above, and using only kiowledge of u and z, a

.-•
Kalman filter is a device for optimally, under certain assumptions, estiLmating

the state of the system. The state estimate is cal:.ed x, and the probability

density of the error (x-x), given the measurements, is a Gaussian density with

zero mean and covariance P. The estimate x is also the mean of the state con-

* ditioned on the measurements up to the current tive, and the covariance P is

the conditional covariance.

33
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The filter has the structure shown in Fig. 3-6, where the optimal gain

a matrix, K, is given by the equation

K - pCTRl1

and where the covariance P obeys a Riccati (quadratic) matrix differential

I p equation

P Ap +pAT +GQCT pCTR7ICp

The compl~icated form of this equation obscures the fact that the solution P

is guaranteed positive and smaller than it would be without any measurements,

i.e., information reduc~es uncertainty.

R-0499

Figure 3-6. Kalman Filter Block Diagram
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The filter's operation is characterized in Fig. 3-7. The filter is based

on a model of the system, used to predict the system output, and correct, d by

[. the Instantaneous errors, between the observation, z, and the filter's pre-

diction of the observation, z.

k - 6MODE ST IATE

R-50

• -l KNOENSYSTEMEINT U

" ",:NOISE POWER ESTIMATE
S~CORRECT ION
EXPECTED TERM TO

OBSERVATION DRIVE MODEL

iqs R-0507

Figure 3-7. Characterization of Filter Operation

Under ideal conditions, the error process, 6, called the innovations or

residuals, is a white Gaussian process resembling the measurement noise.

Intuitively, if the filter's errors are larger than predicted, we expect that

the linear model is wrong. This forms the basis for the hypothesis testing

component of our decision model.

3.3.3 Multiple Hypothesis Testing

The hypothesis testing component of the decision model takes the input

data and computes the posterior probabilities p(Hilz), i.e., the probability
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"that each hypothesis is true given the data, x. The calculation of these

"probabilities uses several Kalman filters - one for each hypothesis. The

I filter relies on a linear model and parameter set (Ai, Bi, etc.) and computes

"a best linear estimate of the current state given the measurements. The hy-

"pothesis tester uses the innovations from each Kalman filter to compute a new

-. •probability for that hypothesis's being true.

To compute the posterior probabilities p(Hiuz) using Bayes theorem, we

"need the probability

p(zIHi)

called the likelihood function. For the linear Gaussian models discussed

earlier, the important result we will need is that the natural log of the

"likelihood function, called gi(t), "can be computed recursively essentially

by just squaring and integrating the residuals of the feedback term of the

Soptimal filter ... " 16, p. 286J. Let 6i(t) be the filter residualc (pred.c-

tion error) and, for mathematical simplicity in the sequel, assume that 6i(t)

is available as a discrete-time proceso, either sampled at t-kA from a con-

tinuous filter or available directly from a discrete filter. Let Hi(t) be

the error covariance for the filter at time t-kA based on the information

(measurements) up to time (k-l)A, i.e., the one-step ahead prediction error.

Then the log-likelihood function can be computed by the equation

24i(kA) -& Fi,bias(k&) + Ei,observation(k&)

where

=ibias(kA) - In Mi(nA) +- - km ln(2w)
rnn

. 36
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wbere a is the dimension of z and

ti,observation(kA) E - nlT(n) A .+(nA)

"The term in the inverse is the expected covariance of the 6j process if the

1i-th hypothesis were true; thus a large number for the sum will occur when the

6j's are large (poor filter performance) and will result in a largely negative

-i,observation and, therefore, a small likelihood function, since

"p(zkAIHi) e

This process le shown schematically in Fig. 3-8.

-[Mi (kA)+Ri/A]

BIAS TERM

FILTERWEGTDP.k)P J)
PREDICTION WEIGHTED - P(ZkAl

ERRORS " - VCTOR ei/2(-)
(k)SQUARER

: "• R- O00 0

I ,-,,

Figure 3-8. Likelihood Calculator

In the above calculator, the likelihood function represents the proba-

bility of . given data z(nA), n-l,...,k, i.e., occurring given that the i-th

hypothesis is true. The diagram indicates how this function is updated as
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, ,each new data sample arrives. The next step Is to describe how the posterior

probabilities p(RlzkkA) are updated.

This update is nominally accomplished using Dayes theorem, which simply

states:

P( kA IHi)P( Hi)
Pp(HiIzkA)

, P ( kA)

p(Hi) is the a priori probability of the hypothesis's being true. For our

*- purposes, this is simply the same as the probability conditioned on data up

to the last measurements, p(Hluz(k-.1),). The normalizing probability p(zkA)

is the same for all hypotheses and is found most easily from the fact that

the sum of all probabilities is 1:

I p(Hilzk&) I 1

Let

I

n. D - p(zkA)= E p(zkAlHi)p(Hilz(k1l),,)

and, thus,

'+ o".-_ . _ P(zkA& H i.)P(Hi' z(k-1),&)

p(H4•1 zkA) D

We show this complete process schematically in Fig. 3-9.

-.. 38
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LIKELIHOOD FUNCTIONS

A PRIORI DELAY
PROBABILITIES

p(1IZ(k1)) .OO

Figure 3-9. Bayes Theorem

3 E3.4 Summary of The Modeling Approach

K The complete hypothesis evaluation model is shown in Fig. 3-10. For each

hypothesis, there is a Kalman filter, likelihood function calculator, and Bayes

~ Itheorem calculator, which needs the outputs from all likelihood funct ion cal-

culations for normalization.

- In many cases, the models for the different hypotheses will be similar,

~ .. ~ and the above processing can be simplified. The states associated with in-

controvertible facts (i.e., hypothesis-independent) could be grouped into a

•single "meta-model," and the state estimates from the corresponding meta

"filter would be passed on to the option-evaluation block. The error from this

filter would not provide information about the correctness of any of the hy-

Sypotheses, and thus would not be passed to the likelihood function or Bayes

'4 39
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"theorem blocks. Since each of the other hypothesis-dependent filters would

.. now be simpler (of smaller dimension), the resulting likelihood functions and

, !probabilities would be somewhat easier to compute, and mathematically equiva-

lent to the original processing.

-,"-=KALMAN FILTER L . LKELIHOOD CALCULATOR I p(zIHI) BYSTER p(HI1z)

,KALMAN FIL.TER 2 2LIKELIHOOD CALCULATOR 2 -- BAYES THEOREMi- : -DATA , 2

Figure 3-10. Hypothesis Evaluation Model

~ Although the generation and number of hypotheses are determined else-

"where, the case when only one hypothesis is considered deserves special atten-

tion. If one hypothesis is considered, the normalization in Bayes theorem

results in a unit probability for that hypothesis. In some cases, this is an

.*.. accurate model of human behavior, at least for control purposes (i.e., the

entire SHOR model will act correctly since the control calculation will be

based on the only hypothesis considered). At other times, however, a decision-

"". maker might have c.r: one V'P .o-nesis that he recognizes might be wrong. This

behavior can be modeled in two ways. The first is to consider a null hypoth-

esis (HO0 ) corresponding to no "•.:'• estimate (x0-0). The filter for this

F hypothesis would pass residua. (6) equal to the data (z) for the likelihood

and Bayes calculations. This would result in the probability for his one

40
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• hypothesis (HI) being reduced (less than 1) since P(Ho Iz) would not be iden-

tically zero. In effect, the filter errors from the one hypothesis would be

u, compared with the measurement noise alone.

The second way of examiuing a single hypothesis is to evaluate the like-

lihood function against an arbitrary threshold, where, in this case the like-

lihood function does not use the Bayes theorem normalization. This technique

is, in fact, with suitable choice of threshold, similar mathematically to the

* -null hypothesis method, since the division in Bayes theorem involves two like-

lihood functions. In general, the null hypothesis approach is recommended,

but only after determining that only one hypothesis really exists. Often the

- doubt about the single hypothesis can be represented as a second hypothesis

with more structure than the null concept above. The added structure (beyond

•- x-O) will make the resulting probacility calculations such more accurate.

I * 3.4 ANTISUBHARINE WARFARE EXAYPLE

This subsection illustrates how the foregoing hypothesis evaluation com-

ponent of the SHOR model might apply to a simplified antisubmarine warfare

situation: what are the states, measurements, and hypotheses, and how do

they evolve? The example considers a task force sailing on an initial course

"(North in the following figures) during an "alert" condition resulting from

higher-level intelligence. The task force commander* believes he is being

shadowed by an enemy submarine since he has had several sonar contacts at the

*The functions described in this section are usually carried out as a cooper-
ative effort by the Composite Warfare Commander (CWC) and the ASWC. We shall

. use the term task force commander (TFC) to represent this joint activity and
to distinguish it from actual CWC/ASWC doctrine and tactics, which it is not
intended to represent.

41
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S".trailing edge of his force, although none were confirmed. The situation is

illustrated in Fig. 3-11, where the circle represents the "keep-out" range of

I ithe task force.

ITASK FORCE

OCCASIONAL

CONTACT

Figure 3-11. Initial Conditions

Initially, the TFC considers three hypotheses.

0 HOj: There is no enemy submmarine.

0 H1: There is an enetay submarine trailing the convoy, but he
is engaged in simple harasomeaet.

0 H12: There is a trailing submarine, and he is preparing for
an attack.

*This notation is used to denote the probability that Hi Is true given all of
the datai up to an including measurements at time 0.

• 4,

14
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"The subjective probabilities the commander places on these hypotheses at tim

*• 'sero 5 are:

0. * p(Holzo) - 0,45 (nothing) ,

• p(HlJlzo) - 0.45 (harassment) ,

. p21201:) - 0.10 (attack)

(Exact values are unimportant; only grossly relative weights are required).

.I this example, the times denote discrete samples approximately 10

minutes apart. The Kalman filter corresponding to each hypothesis predicts

where the enemy submarine(s) will be, with time, given past position and

velocity measurements.

At time 1, another disappearing sonar contact Is observed from the area

of the possible trailing rubmarine. The commander updates his probabilities

to be:

* p(HOIz1) - 0.10 (nothing)

* p(Hlljl) - 0.70 (harassment) ,

. p(Hl2 1 ) - 0.20 (attack)

"Based on these probabilities, he orders a helicopter to investigate. (The

process whereby this decision is made is a subject for Investigation next

year. The purpose here is to illustrate the evolution of the hypotheses for

a given scenario.)

At time 2, there is a second sonar contact, this time ahead of the fleet

and about 30* to the starboard. The first helicopter is now in the area of

the first (trailing) contact, but cannot find anything. The commander now

*This notation is used to denote the probability that Hi is true given all of

the data up to and including measurements at time O.
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recognizes this attack pattern from war games, He ref iines the second hypoth-

* eels to be:

S g H2 : Task force under specific type of enemy attack

Be also considers that both sonar contacts could be real, but that the enemy

Is only engaging In advanced hatassment. Be considers a new hypothesis:

H3 : Two submarines present, but only harassing

Re 1date8 the probabilities to be

* p(H 0 j 2) - 0.05 (nothing) ,

. p(H1 z2 ) - 0.40 (shadow-harassment) ,

- 0 p(H 2Iz 2 ) - 0.45 (attack) ,

0 p(H3jz2) - 0.10 (two-submarine harassment)

A major thrust of next year's effort Is to develop the option evaluation

component of the decisionmaking process. For this example, however, one

feasible response would be to dispatch the escort vessel that picked up the

new contact to investigate, while preparing a second helicopter for launch.

As a precaution, he might order the task force to change direction. The situ-

ation is shown in Fig. 3-12.

At this point, we wish to demonstrate how the data can influence the

probabilities placed on hypotheses, and the resulting effects on the deci-

siotos, by examining three alternate measurements at time 3.

0 p(H0 z3a) - 0.40 (nothing) ,

0 p(H1Iz3a) - 0.30 (shadow) ,

- p(H2Iz3a) - 0.25 (specific attack) ,

* p(H3iZ3a) 0.05 (two-submarine harassment)
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* SECOND CONTACT

POSSIBLE AREA OF
-'FIRST SUB BY TIME 3

/

S~I

K :. I * FIRST CONTACT

. :.,

Figure 3-12. Schematic of an Evolving ASW Situation

The ASWC decides to continue on the altered course. If he finds no evi-

dence of either submarine soo,-, he will resume original course, discarding 12

and H3 .

In the second case (3), the new contact is confirmed by the escort

vessel. The submarine is identified as an enemy type, and found to be maneu-

vering for a possible attack. The first submarine has not yet been confirmed,

and a fourth hypothesis is added to consider a single submarine (from ahead)

attacking:

SH4 : single-submarine forward attack

The updated probabilities become:

* p(H01z3b) " 0.00 (nothing) ,

45
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0 P01123b) a 0.00 (shadow) ,

0 p(H22u3b) - 0.20 (two-submarine attack) ,

- . p(H31z3b) - 0.40 (harassment) ,

, p(H1zI3b) - 0.40 (single-forward attack)

- The commander decides to arm his weapons and prepare for a solo attack (H.4).

In the third case, both submarines are confirmed and observed to be

maneuvering for an attack. The probabilities become:

, p(Holz3c) - 0.00 (nothing) ,

S• p(HjIz3c) - 0.00 (shadow) ,

* p(H21z3c) - 0.60 (two-submarine attack)N

* p(H31z3c) - 0.40 (harassment)

The commander decides to prepare for the attack, arming weapons and possibly

changing course.

In these cases, we see how data can force a modification of the hypoth-

eses, greatly influence the probabilities associated with them, and thus

influence the decisions made. The role of Kalman filtering in this scenario

is almost transparent - simply predicting the expected locations of the sub-

"marines assuming the last sightings were real targets. In more complex exam-

"plea, we expect the filters to play a more important role, predicting more

subtle (unobserved) states, and therefore possibly motivating new measurements

to observe those states.

3.5 NUMERICAL EXAMPLE

This subsection presents a simple numerical example of the hypothesis

evaluation component of the SHOR model to demonstrate how the system parameters

46
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affect the probability estimates and their variation with time. The example

considers two hypotheses and a simple scalar measurement.* The first hypoth-

esis is that the system state is a scalar first-order Gauss-Harkov process

- driven by white Gaussian noise, and observed with additive white Gaussian

noise. This corresponds to an exponential autocorrelation function for the

state. The state might represent the increase (or decrease) of enemy probes

along a perimeter, and the measurement would be the reported increase or de-

crease. The second hypothesis is that there are no state dynamics (i.e.,

;x0), only measurement noise (i.e., false reports or activity).

The continuous-time model for the first hypothesis (Hl), using the nota-

tion of subsection 3.3, is represented by

A --i , Gi-i ;
B-i ; Q 1
C-i ; R=I ;
u 0

*.. This system is shown in Fig. 3-13.

,.,

R-0490

Figure 3-13. First Hypothesis

*The general modeling approach was developed for arbitrarily large vector mea-

surements, states, and inputs. The example of this section is the simplest,
scalar case.
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The second hypothesis has the parameter set:

A- 0 Gin 0
B-O ; Q=O ;
C=O ; R 1

-u=O ; x O0

This system is shown in Fig. 3-14.

V

1.0491

Figure 3-14. Second Hypothesis

The discrete-time version of these systems, which has generally .similar

U behavior (for short sample times A), is givern by

HI: Xk+l - (1-A)Xk + Awk

• • zk =xk + Vk

112: -k =Vk

where

jak:: Z~~~[vk vj]" '
0 otherwise

(under both hypotheses) and

4b
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J-k
E[wk i] -w-

0 otherwise

under 1I. The noises are indevendent of each other.

Onr hypothesis evaluation model constructs two Kalman filters (one forA
each hypothesis), given by

HI: xk+1 - (I-A)xk + AK -k (1-6)xk)

K = P/R

A

k =Zk xk

"H2 : xk q 0

k 6 k=zki= vk

Under HI, the gain K is determined from the conditional covariance P, which

satisfies the equation

Sk+I k+I

Mk+j - (1-A) 2 Pk + AQ

For Q-R-I, and for A-O.1, this has the solution (in steady-state), when

"Pk+1 PO:

P -0.426

M 0.445

49
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P denotes the conditional covariance just after a measurement, and M the co-

variance just before a measueement (i.e., the one-step prediction error). For

comparison, the continuous-time variance is given by

"P -•2- I - 0.414

Thus, little information is lost in the discrete version (A-O.1).

We next want to examine how the hypothesis evaluation takes place if HI

K were true. Then the filter above is optimal, #nd the error process for theI first filter has a covariance given by

E[82 + R
k 1 1

"For the second filter, the error process becomes

6 kXk+vk

*• which has a covariance given by

E[62  R+E 1 62 H - x-2 + -

k 2  A

where x2 is the covariance of the actual state, found from

-... . P~

POLk+l = (1= +P k

which in steady-state, becomes

"x2 0.5z6
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"Using the processing formulas of subsection 3.3, and assuming that the

average value of 62 is approximated by the expectations above, we can now com-

pute the posterior probabilities p(Hllzk) and p(H2Izk) with time (as the mea-

surements are taken). In any experiment, the actual values of the error se-

uences will be noisy, and the probabilities may become more (..- less accurate.

:- But on the average, we expect them to behave as shown in Fig. 3-15. The fig-

ure depicts the first 30 samples of a hypothesis evaluation (H1 was true) that

.- began with the filters in steady-state, that is, the initial conditions of the

covariances were equal to their steady-state values so that no gain transients

occurred, and with three initial probabilities for p(HlIzo): 0.2 ., 0.50, and

. 0.75. In all cases p(H21zk) is simply

p(d2lzk) - 1 - p(HlIzk)

1.00
•.,p(H 1)0=0.7

0.75 0
p(H) tP.50

-" 0.50
,, •~P(H 1 0 0=0•.25.......

0.25

0I I I

0 10 20 30

SAMPLE (k)

R-0498

Figure 3-15. Posterior Probability Variation with Time (H1 True)
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We see that, on the average, the correct hypothesis is chosen reasonably

quickly, unless the initial estimate p(Hulzo) was poor or the number of sam-

ples mall. The speed of response of the probabilities is determined by the

parameters in the model, through the covariances and Initial estimates, and

the actual noise samples (data) received. We note that the case where H2 is

true produces similar (symmetric) results for P(H21'k).

3.6 SUMARY

This section has presented our concept of an expanded SHOR model for

human decisionmaking in C3 . SHOR was decomposed into hypothesis and option

evaluation components, connected by the state estimates and hypothesis prob-

abilities. A detailed hypothesis evaluation model was then designed that cap-

tures the imporant human behavior. An ASW example was presented to illustrate

the overall SHOR approach, and a simple numerical example was discussed that

p demonstrated how the hypothesis evaluation component of the model works.
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SECTION 4

DISCUSSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

* 4.1 DISCUSSION

"* Summary. The SHOR paradigm was presented as a structure for analyzing

human cognitive decisionmaking. The SHOR paradigm describes decisionmaking

as a cascading of four activities. They are information processing, hypoth-

. esis generation and evaluation, option generation and evaluation, and decision

execution.

A model of a commander's hypothesis evaluation activity was developed.

The model was cast in the Bayesian (optimal) framework. The inputs to the

model are the hypotheses and sensor data, and its outputs are the posterior

probabilities of the hypotheses' being true and their respective states of

nature. It has been tacitly assumed that these outputs are sufficient for

the commander to perform the option generation and evaluation activities.

A brief example of how the posterior probabilities of the hypotheses

"evolve in the light of new data was presented.

t.2  Implications.

"1. Based on previous discussions, data are received, identified,
and interpreted to have information value by perception pro-
cessing. The reason, then, to model this process would be an
attribution of importance to how preliminary data are inter-
preted to later modeling efforts, such as decisionmaking or
selection. In the ASWC context, sensor data or intelligence
information are generally presented to commanders in an unam-
biguous manner - though it is often uncertain in nature. Such
umambiguity precludes the role of perception processing in the
"modeling effort.
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2. In the ,:ontext of ASW, hypotheses are the existence or nonexis-
tence of target tracks and the target's classifications. All
targets are presumed hostile.

S3. The Bayesian hypothesis evaluation technique described must be
revised to include human limitations and biases. It Is improb-
able that commanders have the cognitive capacity to grapple
with the combinatorial complexity requisite for the solution of
this algorithm. Nor is there any evidence that they do it in
this way.

4. The depth first, one-step backtrack option evaluation algorithm
[31] is not suitable. We have learned from conversations with
ASW commanders that they do not optimize. They satisfice [32],
i.e., they meet some predetermined requirements for action.
One commander described the option evaluation activity as
"selecting the first feasible action." Some commanders simply
adhere to standard operating procedures or doctrine.

4.2 RECOMMENDATIONS FOR FUTURE RESEARCH

Next year's effort will involve the development of a computer simulation

of an ASW battle group commander in a hostile environment. The decision prob-

lem will be as follows. The ASW commander will be responsible for the track-

enemy from coming within range to launch torpedoes or cruise missiles against

the carrier. The ASWC will have at his disposal sensors and weapons. These

S Psensors and weapons are components of, or contained on, the battle group's

destroyers, attack submarine, helicopters, and carrier-based aircraft.

The seminal activity of the ASWC will then be situation assessment. On

o • a continuous basis, he is asking and trying to clarify these questions [1]:

0 Is the datum a false alarm?

, If not, is it an old or new target?

0 How can I resolve these ambiguities?

* Which sensor(s) and where to deploy?

54
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0 Am I rendering the carrier vulnerable to attack by an, as yet
undetected enemy submarine?

! EThe model of the ASWC's decision process will have three major

subroutines.

Truth subroutine. This subroutine will model the notion of the battle

I! group's platforms, the status of their set.sors, and the motion of the enemy

submarines. The inputs to the subroutine will be the ASWC's decisions, over-

all battle group line of intended movement, and enemy submarine trajectories.

The outputs will be the new battle group locetions and the data (contacts)

generated by the operational sensors.

of Tracking subroutine. This subroutine will model the hypothesis evalua-

tion, or situation assessment, activity. That is, sensor data will be related

to target tracks. The inputs to the subroutine will be the sensor data and

I ~battle group state estimates. The outputs will be the state estimates of the

tracks and their posterior probabilities of being true tracks. This sub-

routine will build upon the work presented in Section 3.

Decision subroutine. The commander's decisionmaking algorithm will be

modeled in this subroutine. His controls include the motion and responsibil-

ity of ASW platforms. More specifically, he directs the platform movement in

space, and platform sensor and weapon status. His decisions will be made on

the basis of the perceived threat of the target and the cost (increased vul-

* nerability) of deploying an asset to gather more information. The inputs to

the subroutine will be the state estimates of the tracks, the posterior proba-

"bilities of being true tracks, and the state estimates of the battle group.
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The output@ will be the platform comands. The decision subroutine will en-

code the satif icing or bounded rationality nature of ASW decisionmaking.

Interviews with experienced ASW players will be held to assess the rea-

,.-, sonableness of the model.

K-5

*1,o

i '-
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